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The simulation of electronic devices require in many applications robust solutions from DC to high frequencies. For this purpose
we introduce a symmetric low-frequency stable formulation of Maxwell’s equations which allows the simulations of electrically large
structures down to DC. It is discretized in space by the finite element method. The numerical complexity, in particular in multi-query
scenarios, is decreased by employing a reduced order modeling method allowing for efficient computations.

Index Terms—Maxwell equations, low-frequency, frequency domain, multi-query, robust formulation

I. INTRODUCTION

S INCE the complexity of electronic devices in industrial
microwave engineering keeps growing, modern design pro-

cesses rely on numerical simulation for creation, modification,
analysis, or optimization. The computer-aided design (CAD)
process of such devices requires accurate and fast simulations.
The numerical analysis of electromagnetic structures of large
scale necessitates the solution of partial differential equations
(PDEs) stemming from Maxwell’s Equations.

In the literature, e.g., [1], [2], the use of the E-field for-
mulation in frequency domain is suggested for fast frequency
sweeps, e.g., for the evaluation of a broad-band transfer func-
tion (e.g., S-parameters). The formulation reads

curlµ−1 curlE(ω) + (iωσ + (iω)2ε)E(ω) = −iωJ(ω), (1)

where ε denotes the permittivity, σ the conductivity, and µ
the permeability. E(ω) is the electric field and the magnetic
field is obtained through H(ω) = −1/(iωµ) curlE(ω); J(ω)
is a given source current. We assume linear scalar valued
materials, and for simplification of the notation perfect electric
conducting (PEC) boundary conditions. Yet, the formulation
easily extends to perfect magnetic conducting (PMC) and sur-
face impedance boundary conditions and dispersive materials.
However this formulation suffers from stability issues as the
frequency ω tends to zero, which is discussed for instance in
[3].

The simulation of the device as part of an electrical network
and time domain computations require a robust solution in
a frequency range from DC to high frequency for many
applications (e.g. the computation of transient E-, H-, and far-
fields). To this end several potential-based A-Φ-formulations
have been proposed in literature [4], [5], [6], [7], to account for
the lack of stability in the E-field formulation. Based on these
works, a new symmetric low-frequency stable formulation is
proposed which does not require supplementary equations in
comparison to (1) and, additionally, can handle excitations
by non-solenoidal currents (the closure of the current loop is
implicitly performed by the solution). Its finite element (FE)

discretization yields the same number of equations as (1). This
is not the case for certain A-Φ-formulations.

Regardless of the formulation, each FE discretization yields
a high-dimensional system of linear equations, which conse-
quently requires substantial numerical effort to be solved. A
reduced order modeling (ROM) method is applied in order
to obtain a reduced order model which still preserves the
frequency dependency of the original system, but of much
lower dimension. Thus it allows for a fast evaluation of suitable
frequency sweeps, cf. Fig. 1.
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Fig. 1. Model order reduction scheme. Typically the factor in dimension
between the FE and the ROM system is of a couple of orders of magnitude.

II. LOW-FREQUENCY STABLE, SYMMETRIC FORMULATION

Considering the limit as ω → 0 in the E-field formulation (1)
one observes that the system is described by the curl-curl
term. However, gradient fields lie in its kernel and thus these
components (arising, e.g., as solutions to electrostatic behavior)
cannot be recovered by solving (1) especially at DC. Using a
particular gauging choice and the ansatz E(ω) = iωA +∇Φ,
where A and ∇Φ live on disjoint subspaces of the same
function space as E previously, for the electric field we derive



a stable formulation for Maxwell’s equations. In the FE-
discretized setting the gauging condition can be realized by
using a tree-cotree splitting [8], [9]. For simplicity of notation
we present here the non-conductive case only, i.e., σ ≡ 0. One
obtains the following set of equations

(µ−1 curlA, curl v) + iω(ε(iωA +∇Φ), v) = −(J(ω), v),

(ε∇Φ,∇ϕ) + iω(εA,∇ϕ) = − 1

iω
(J(ω),∇ϕ). (2)

This system is symmetric and can be solved directly if J(ω)
is solenoidal in ω = 0. However, in the case of non-solenoidal
current excitation the E-field is unbounded, i.e.,

|E| → ∞ as ω → 0.

To this end, we propose the ansatz E(ω) = iωA+∇Φ+ 1
ω∇Φ0,

where Φ0 accounts for the divergent part of the right-hand side.
Then the system (2) above can be evaluated in the required
frequency interval and the magnetic field is robustly obtained
through H(ω) = µ−1 curlA(ω). We proceed analogously
in the case that we have conductive domains with σ > 0
in the computational domain to obtain a symmetric stable
formulation. For details we refer to the full paper.

III. REDUCED ORDER MODEL

A FE discretization of (1) using edge elements yields the
linear system(

K + iωMσ − ω2Mε

)
EFE(ω) = −iωJFE(ω), (3)

where K denotes the curl-curl matrix, which is symmetric
positive semidefinite. Mε, Mσ are material mass matrices,
which are symmetric positive definite, semidefinite, respec-
tively. Since K is singular, the stability issues for ω → 0
are inherited by the ROM system. Thus the discretization
and reduction procedure is applied on the symmetric stable
formulation (2). This guarantees a low-frequency stable and
symmetric FE system with a regular system matrix in ω = 0
and consequently the obtained ROM system is low-frequency
stable. For the numerical results we used a block-structure
preserving multipoint reduced basis ROM method, cf. [10].

IV. NUMERICAL RESULTS

The stable formulation and a ROM approach, i.e., a block-
structure preserving multipoint reduced basis method, was
applied for the simulation of a package. Field solutions and
S-parameters of the structure were computed; they describe
the electrical behavior under excitation by electrical signals.
The DC field result is shown in Fig. 2. The full paper features
detailed data in terms of computation times and data usage.

V. CONCLUSION

In this work a low-frequency stable formulation of
Maxwell’s equations was discussed. We presented a symmetric,
stable formulation which allows for describing even electrically
large structures accurately down to DC. A ROM method
was applied in order to obtain a reliable but fast to evaluate
model which describes the structure in the required frequency

Fig. 2. A package structure. The E-field in 0Hz recovers the DC current
distribution, which cannot be obtained through (1).

range. The capability of the proposed method was illustrated
with a numerical example focusing on low-frequency stability.
The full paper will discuss the formulation in more details,
in particular the cases of non-solenoidal current excitations
and lossy materials, e.g., Ohmic losses. Numerical examples
will be discussed and underline the robustness of the stable
formulation and the efficiency of the ROM approach.
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